

## **Content**



| 1   | Fire safety                        |                                                         |      |  |
|-----|------------------------------------|---------------------------------------------------------|------|--|
| 1.1 | What is fire safety?               |                                                         |      |  |
|     | 1.1.1                              | Goals of fire safety                                    | 1-2  |  |
|     | 1.1.2                              | Measures for fire safety                                | 1-5  |  |
| 1.2 | Devel                              | opment of a fire                                        | 1-7  |  |
| 1.3 | Desig                              | n of fire safe buildings                                | 1-9  |  |
|     | 1.3.1                              | Construction concept                                    | 1-9  |  |
|     | 1.3.2                              | Monitoring concept                                      | 1-16 |  |
|     | 1.3.3                              | Extinguishing concept                                   | 1-17 |  |
| 1.4 | Fire sa                            | afety requirements                                      | 1-18 |  |
|     | 1.4.1                              | Building regulations                                    | 1-18 |  |
|     | 1.4.2                              | Structural fire safety                                  | 1-20 |  |
|     | 1.4.3                              | Equivalent fire safety                                  | 1-21 |  |
| 1.5 | Fire as                            | s an accidental action                                  | 1-23 |  |
| 1.6 | Behav                              | riour of steel sections during fire                     | 1-26 |  |
| 1.7 | Litera                             | ture                                                    | 1-29 |  |
|     |                                    |                                                         |      |  |
| 2   | Calculation of the fire resistance |                                                         |      |  |
| 2.1 | Terms                              | and conditions                                          | 2-2  |  |
|     | 2.1.1                              | Standard fire curve                                     | 2-3  |  |
|     | 2.1.2                              | Effective yield strength of steel in the fire situation | 2-3  |  |
|     | 2.1.3                              | Degree of utilization                                   | 2-3  |  |
|     | 2.1.4                              | Section factor                                          | 2-4  |  |
|     | 2.1.5                              | Critical steel temperature                              | 2-7  |  |
|     | 2.1.6                              | Cross-section classification in the fire situation      | 2-8  |  |
| 2.2 | Calcul                             | ation of the thermal response                           | 2-10 |  |
|     | 2.2.1                              | Net heat flux to the steel member                       | 2-10 |  |
|     | 2.2.2                              | Heating of unprotected steel sections                   | 2-10 |  |
|     | 2.2.3                              | Heating of unprotected galvanized steel sections        | 2-12 |  |
|     | 2.2.4                              | Heating of protected steel sections                     | 2-13 |  |
| 2.3 | Calcul                             | ation of the mechanical response                        | 2-17 |  |



| 2.6             | Columns                                                |                                                                        |      |  |
|-----------------|--------------------------------------------------------|------------------------------------------------------------------------|------|--|
| 2.7             | Beams sensitive to lateral torsional buckling          |                                                                        |      |  |
| 2.8             | Integrated beams, unprotected                          |                                                                        | 2-33 |  |
|                 | 2.8.1                                                  | Thermal behaviour                                                      | 2-33 |  |
|                 | 2.8.2                                                  | Simple calculation method                                              | 2-34 |  |
|                 | 2.8.3                                                  | Advanced calculation method                                            | 2-35 |  |
| 2.9             | Integr                                                 | ated beams, protected                                                  | 2-43 |  |
| 2.10            | Litera                                                 | ture                                                                   | 2-46 |  |
|                 |                                                        |                                                                        |      |  |
| 3               | Fire sa                                                | afety engineering                                                      | 3-2  |  |
| 3.1             | What                                                   | is fire safety engineering?                                            | 3-3  |  |
|                 | 3.1.1                                                  | Developments                                                           | 3-4  |  |
| 3.2             | Natur                                                  | al fires and local fires                                               | 3-5  |  |
|                 | 3.2.1                                                  | LOCAFI                                                                 | 3-6  |  |
|                 | 3.2.2                                                  | Example of a car park                                                  | 3-8  |  |
| 3.3             | Natur                                                  | Natural fires and compartment fires                                    |      |  |
|                 | 3.3.1                                                  | Background                                                             | 3-10 |  |
|                 | 3.3.2                                                  | Method using zone models                                               | 3-10 |  |
|                 | 3.3.3                                                  | Ozone                                                                  | 3-13 |  |
| 3.4             | Natural fires and external steel structures            |                                                                        |      |  |
| 3.5 System beha |                                                        | m behaviour of steel structures                                        | 3-16 |  |
|                 | 3.5.1                                                  | MACS                                                                   | 3-18 |  |
| 3.6             | Litera                                                 | ture                                                                   | 3-21 |  |
|                 |                                                        |                                                                        |      |  |
| 4               |                                                        | n tables                                                               | 4-1  |  |
| 4.1             |                                                        | ection factor $k_{y,\theta}$ derived from equation (4.22)              |      |  |
|                 |                                                        | 1993-1-2; see equation (2.2) in Fire 2                                 | 4-2  |  |
| 4.2             |                                                        | ction factors $k_{y,\theta}$ and $k_{E,\theta}$ according to table 3.1 |      |  |
|                 |                                                        | 1993-1-2                                                               | 4-6  |  |
| 4.3             | Reduction factor for the design load level in the fire |                                                                        |      |  |
|                 |                                                        | ion $\eta_{fi}$ for different occupancies and load factors             | 4-7  |  |
| 4.4             |                                                        | temperature $\theta_a$ of an unprotected I-section                     |      |  |
|                 |                                                        | sed to the standard fire curve for non-galvanized                      | 1_0  |  |
|                 | and a                                                  | ISIVANIZAD CTABI                                                       | 4-0  |  |









| 4.5  | Section factor A/V for IPE, HEA, HEB and HEM                                          | 4 1 4 |
|------|---------------------------------------------------------------------------------------|-------|
|      | sections                                                                              | 4-14  |
| 4.6  | Steel temperature $\theta_a$ of unprotected IPE and                                   |       |
|      | HE sections after 30 minutes exposure to the                                          |       |
|      | standard fire curve for both non-galvanized and                                       |       |
|      | galvanized steel                                                                      | 4-17  |
| 4.7  | Steel temperature $\boldsymbol{\theta}_{\text{a,ext}}$ of an unprotected              |       |
|      | I-section exposed to the external fire cuve                                           | 4-19  |
| 4.8  | Critical steel temperature $\boldsymbol{\theta}_{\text{a,cr}}$ for centrically loaded |       |
|      | compression members in grade S235 steel                                               | 4-20  |
| 4.9  | Critical steel temperature $\boldsymbol{\theta}_{\text{a,cr}}$ for centrically loaded |       |
|      | compression members in grade S275 steel                                               | 4-26  |
| 4.10 | Critical steel temperature $\boldsymbol{\theta}_{\text{a,cr}}$ for centrically loaded |       |
|      | compression members in grade S355 steel                                               | 4-32  |
| 4.11 | Critical steel temperature $\theta_{\rm a,cr}$ for centrically loaded                 |       |
|      | compression members in grade \$420 steel                                              | 4-38  |
| 4.12 | Critical steel temperature $\boldsymbol{\theta}_{\text{a,cr}}$ for centrically loaded |       |
|      | compression members in grade \$460 steel                                              | 4-44  |
| 4.13 | Cross-section class of IPE, HEA, HEB and HEM                                          |       |
|      | sections in bending and compression for grades                                        |       |
|      | S235, S355, S420 and S460 steel                                                       | 4-50  |
| 4.14 | Cross-section class of readily available hollow sections                              |       |
|      | in compression for grades \$235, \$275 and \$355 steel                                | 4-53  |